Indian Statistical Institute, Bangalore M. Math First Year Second Semester - Differential Geometry I Back Paper Exam Maximum Marks: Duration: 3 hours

Attempt all questions, they carry equal marks.

- 1. Let $\alpha(t)$ be a unit speed curve in \mathbb{R}^3 with curvature $k(t) \neq 0$ for all t. Define a new curve δ by $\delta(t) = \frac{d\alpha(t)}{dt}$. Show that $\delta(t)$ is regular. If s is the arc length parameter for s, show that $\frac{ds}{dt} = k$ and the curvature of s is $\sqrt{1 + \frac{t^2}{k^2}}$ where t is the torsion of α .
- 2. Let σ be a surface patch with N as its standard unit normal. Let $F_3 = \begin{pmatrix} \|N_u\|^2 & N_u \cdot N_v \\ N_u \cdot N_v & \|N_v\|^2 \end{pmatrix}$. Let F_1, F_2 denote the matrices of the first and second fundamental forms of σ respectively. Show that $F_3 = F_2 F_1^{-1} F_2$.
- 3. Let H and K denote the mean and Gaussian curvatures of a surface patch σ . Let F_1, F_2, F_3 be as in (2). Show that $F_3 2HF_2 + KF_1 = 0$.
- 4. Let $F: [0, \pi] \to \mathbb{R}$ be a smooth function with $F(0) = F(\pi) = 0$. Prove that $\int_0^{\pi} F'^2 dt \ge \int_0^{\pi} F^2 dt$ and equality holds if and only if there exists a real number A such that $F(t) = A \sin(t)$ for all $t \in [0, \pi]$.